12.3 - Dot Product

Review:

Dot Product: If $\vec{a} = \langle a_1, a_2, a_3 \rangle$ and $\vec{b} = \langle b_1, b_2, b_3 \rangle$, then the dot product of \vec{a} and \vec{b} is the number $\vec{a} \cdot \vec{b}$ or $\langle \vec{a}, \vec{b} \rangle$ given by $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$. Observe that with this type of "multiplication," we start with two vectors, but end up with a scalar. As a result, this is also called the **scalar product**, or inner product. In the next section, we will learn of a different type of vector multiplication where the result is a vector (vector product or cross product).

Properties of the Dot Product • $\vec{a} \cdot \vec{a} = |\vec{a}|^2 = (\sqrt{a_1^2 + \ldots + a_n^2})^2 = a_1^2 + \ldots + a_n^2,$ • $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ Commutativity. • $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ Distributivity. • $(c\vec{a}) \cdot \vec{b} = c(\vec{a} \cdot \vec{b}) = \vec{a} \cdot (c\vec{b})$ Scalar Associativity. • $\vec{0} \cdot \vec{a} = 0$ Scalar Zero.

Dot Product Angle Theorem: If θ is the angle between \vec{a} and \vec{b} where $0 \le \theta \le \pi$, then $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta.$

Corollary: Let θ be the angle between the (nonzero) vectors \vec{a} and \vec{b} , then: $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$.

Perpendicular/Orthogonal: Say we have nonzero vectors \vec{a} and \vec{b} where the acute angle between them is $\theta = \frac{\pi}{2}$. In this case, the previous theorem gives us $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \frac{\pi}{2} = 0$. Conversely, if $\vec{a} \cdot \vec{b} = 0$, then $\cos\theta = 0$ and the acute angle θ must be equal to $\frac{\pi}{2}$. The zero vector $\vec{0}$ is considered to be perpendicular to all vectors, therefore we have:

Vector Orthogonality Criteria: Two vectors \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b} = 0$.

determine whether to vectors are parallel by looking at whether $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \pm 1.$

Useful Tidbit: You can easily experiment to find that $\vec{a} \cdot \vec{b}$ is positive for $\theta < \frac{\pi}{2}$, and negative for $\theta > \frac{\pi}{2}$. We can therefore think of $\vec{a} \cdot \vec{b}$ as measuring the extent to which the two vectors point in the same direction: positive when in the same direction, 0 when perpendicular, and negative when pointing in the opposite direction.

Direction Angles and Direction Cosines

Let \vec{P} be a nonzero vector in three dimensions.

Direction Angles: The angles α , β , and γ are those angles (all in the interval $[0, \pi]$) that the vector \vec{P} makes with the positive *x*, *y*, and *z*-axes, respectively.

Direction Cosines: $\cos \alpha$, $\cos \beta$, $\cos \gamma$. Simple calculations reveal that using these angles, we can rewrite \vec{P} as $\vec{P} = \langle x, y, z \rangle = \left\langle \left| \vec{P} \right| \cos \alpha, \left| \vec{P} \right| \cos \beta, \left| \vec{P} \right| \cos \gamma \right\rangle = \left| \vec{P} \right| \left\langle \cos \alpha, \cos \beta, \cos \gamma \right\rangle$. Therefore, the unit vector is: $\frac{\vec{P}}{\left| \vec{P} \right|} = \left\langle \cos \alpha, \cos \beta, \cos \gamma \right\rangle$.

Projections

Vector Projection: If *S* is the foot of the perpendicular from *R* to the line containing \overrightarrow{PQ} , then the vector with representation \overrightarrow{PS} is called the vector projection of \vec{u} onto \vec{v} and is denoted by $proj_v \vec{u}$ (also thought of as the "shadow" of \vec{u}).

So we have:

Vector Projection of \vec{u} onto \vec{v} : $proj_{v}\vec{u} = \left(\frac{\vec{v}\cdot\vec{u}}{|\vec{v}|}\right)\frac{\vec{v}}{|\vec{v}|} = \frac{\vec{v}\cdot\vec{u}}{|\vec{v}|^{2}}\vec{v}$.

Scalar Projection of \vec{u} **onto** \vec{v} : This is the signed magnitude (scalar component) of the vector projection, which is the number $|\vec{u}| \cos \theta$, where θ is the angle between the vectors, denoted $comp_v \vec{u}$. So we have: **Scalar Projection of** \vec{u} **onto** \vec{v} : $comp_v \vec{u} = \frac{\vec{v} \cdot \vec{u}}{|\vec{v}|}$,

Displacement Vector: Suppose that some constant force is written as a vector $\vec{F} = \vec{PR}$. And suppose this force is moving an object from *P*, but in a direction not parallel to \vec{PR} (see image above where the object is moved along the ground, instead of in the direction of the force). If the force moves the object from *P* to *Q*, then the displacement vector is notated $\vec{D} := \vec{PQ}$.

Work: This is the product of the component of the force along \vec{D} ($|\vec{F}| \cos \theta$), by the distance moved ($|\vec{D}|$) or: $W = (|\vec{F}| \cos \theta) |\vec{D}|$. Therefore, using the dot product angle theorem, we have $W = |\vec{F}| |\vec{D}| \cos \theta = \vec{F} \cdot \vec{D}$.

Problem #4 Letting $\vec{a} = \langle 6, -2, 3 \rangle$ and $\vec{b} = \langle 2, 5, -1 \rangle$, find $\vec{a} \cdot \vec{b}$.

$$\vec{a} \cdot \vec{b} = 6 \cdot 2 + (-2) \cdot 5 + 3 \cdot (-1) = -1.$$

Problem #18 Find the angle between the vectors $\vec{a} = \langle 4, 0, 2 \rangle$, and $\vec{b} = \langle 2, -1, 0 \rangle$. (First find an exact expression and then approximate to the nearest degree.)

$$\cos\theta = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}||\vec{b}|}$$
$$\left|\vec{a}\right| = \sqrt{4^2 + 0^2 + 2^2} = 2\sqrt{5}, \qquad \left|\vec{b}\right| = \sqrt{2^2 + (-1)^2 + 0^2} = \sqrt{5}$$
$$\vec{a}\cdot\vec{b} = \langle 4,0,2 \rangle \cdot \langle 2,-1,0 \rangle = 4 \cdot 2 + 0 \cdot (-1) + 2 \cdot 0 = 8.$$
$$\cos\theta = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}||\vec{b}|} = \frac{8}{2\sqrt{5}(\sqrt{5})} = \frac{4}{5}.$$
$$\theta = \cos^{-1}\frac{4}{5} \approx 37^{\circ}$$

Problem #22 Find, correct to the nearest degree, the three angles of the triangle with the vertices A(1,0,-1), B(3,-2,0), C(1,3,3).

2

$$\cos \theta_{B} = \frac{\overrightarrow{AB \cdot BC}}{|\overrightarrow{AB}| |\overrightarrow{BC}|} = \frac{-2 \cdot 2 - 2 \cdot 5 + 1 \cdot 3}{\sqrt{2^{2} + 2^{2} + 1^{2}} \sqrt{2^{2} + 5^{2} + 3^{2}}} = \frac{-4 - 10 + 3}{\sqrt{9} \sqrt{38}} = \frac{-11}{3\sqrt{38}} \approx -0.595,$$

$$\cos \theta_{C} = \frac{\overrightarrow{BC} \cdot \overrightarrow{CA}}{|\overrightarrow{BC}| |\overrightarrow{CA}|} = \frac{-2 \cdot 0 - 5 \cdot 3 - 3 \cdot 4}{\sqrt{2^{2} + 5^{2} + 3^{2}} \sqrt{0^{2} + 3^{2} + 4^{2}}} = \frac{-15 - 12}{\sqrt{38} \sqrt{25}} = -\frac{27}{5\sqrt{38}} \approx -0.876,$$

$$\cos \theta_{A} = \frac{\overrightarrow{CA \cdot AB}}{|\overrightarrow{CA}| |\overrightarrow{AB}|} = \frac{2 \cdot 0 + 3 \cdot 2 - 4 \cdot 1}{\sqrt{0^{2} + 3^{2} + 4^{2}} \sqrt{2^{2} + 2^{2} + 1^{2}}} = \frac{6 - 4}{\sqrt{25} \sqrt{9}} = \frac{2}{15} \approx 0.133.$$

-2

Therefore,
$$\theta_B = \cos^{-1}\left(-\frac{11}{3\sqrt{38}}\right) \approx 2.208$$

Or, $\cos^{-1}\left(\frac{11}{3\sqrt{38}}\right) \approx 0.9338$,
 $\theta_C = \cos^{-1}\left(-\frac{27}{5\sqrt{38}}\right) \approx 2.638$
Or, $\cos^{-1}\left(\frac{27}{5\sqrt{38}}\right) \approx 0.5033$,
 $\theta_A = \cos^{-1}\left(\frac{2}{15}\right) \approx 1.437$
Or, $\cos^{-1}\left(-\frac{2}{15}\right) \approx 1.705$.

We need $\theta_A + \theta_B + \theta_C \approx \pi$.

Therefore, $\theta_B \approx 0.9338$, $\theta_C \approx 0.5033$, $\theta_A \approx 1.705$.

Problem #24 Determine whether the following vectors are orthogonal, parallel, or neither. a) $\vec{u} = \langle -3, 9, 6 \rangle$, $\vec{v} = \langle 4, -12, -8 \rangle$.

$$\vec{u} \cdot \vec{v} = -3 \cdot 4 + 9 \cdot (-12) + 6 \cdot (-8) = -168 \neq 0.$$
 Not orthogonal.
$$\left|\vec{u}\right| = \sqrt{3^2 + 9^2 + 6^2} = 3\sqrt{14}, \qquad \left|\vec{v}\right| = \sqrt{4^2 + 12^2 + 8^2} = 4\sqrt{14}.$$

Therefore, $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} = \frac{-168}{3\sqrt{14} \cdot 4\sqrt{14}} = -1.$

So, \vec{u} and \vec{v} are parallel.

b)
$$\vec{u} = \vec{i} - \vec{j} + 2\vec{k}$$
, $\vec{v} = 2\vec{i} - \vec{j} + \vec{k}$

 $\vec{u} \cdot \vec{v} = 1 \cdot 2 - 1 \cdot (-1) + 2 \cdot 1 = 5$

 \neq 0. Not orthogonal.

$$\left|\vec{u}\right| = \sqrt{1^2 + 1^2 + 2^2} = \sqrt{6}.$$
 $\left|\vec{v}\right| = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{6}.$

Therefore, $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} = \frac{5}{6} \neq \pm 1$. So, \vec{u} and \vec{v} are NOT parallel.

c) $\vec{u} = \langle a, b, c \rangle$, $\vec{v} = \langle -b, a, 0 \rangle$.

$$\overrightarrow{u} \cdot \overrightarrow{v} = a \cdot (-b) + b \cdot a + c \cdot 0 = 0.$$

Orthogonal, so not parallel.

Problem #30 Find the acute angle between the lines x + 2y = 7 and 5x - y = 2.

For the first line, we have points (7,0) and $\left(0,\frac{7}{2}\right)$. For the second line we have points $\left(\frac{2}{5},0\right)$ and $\left(0,-2\right)$.

Therefore, we can define vectors $\vec{u} = 2 \cdot \langle 7 - 0, 0 - \frac{7}{2} \rangle = \langle 14, -7 \rangle$ and $\vec{v} = 5 \cdot \langle \frac{2}{5} - 0, 0 + 2 \rangle = \langle 2, 10 \rangle$, for the two lines respectively.

$$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|} = \frac{14 \cdot 2 + (-7) \cdot 10}{\sqrt{14^2 + 7^2} \sqrt{2^2 + 10^2}} = \frac{28 - 70}{\sqrt{245} \sqrt{104}} = \frac{-42}{7\sqrt{5} \cdot 2\sqrt{26}} = \frac{-3}{\sqrt{130}}.$$

Therefore, $\theta_1 = \cos^{-1}\left(\frac{-3}{\sqrt{130}}\right) \approx 1.8375 > \frac{\pi}{2} \approx 1.57$, so this is the obtuse angle.

So the acute angle must be $\theta_2 = \pi - \cos^{-1}\left(\frac{-3}{\sqrt{130}}\right) \approx 1.3045.$

Problem #42 Given $\vec{a} = \langle -2, 3, -6 \rangle$ and $\vec{b} = \langle 5, -1, 4 \rangle$, find the scalar and vector projections of \vec{b} onto \vec{a} . Scalar Projection of \vec{a} onto \vec{b} :

$$comp_b \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} = \frac{-2 \cdot 5 + 3(-1) - 6(4)}{\sqrt{2^2 + 3^2 + 6^2}} = \frac{-10 - 3 - 24}{\sqrt{49}} = \frac{-37}{7}.$$

Vector Projection of \vec{a} onto \vec{b} :

$$proj_{b}\vec{a} = \left(\frac{\vec{a}\cdot\vec{b}}{|\vec{a}|}\right)\frac{\vec{b}}{|\vec{b}|} = \frac{-37}{7}\frac{\langle 5,-1,4\rangle}{\sqrt{5^{2}+1^{2}+4^{2}}} = -\frac{37}{7\sqrt{42}}\langle 5,-1,4\rangle.$$

Problem #50 A tow truck drags a stalled car along the road. The chain makes an angle of 30° with the road and the tension in the chain is 1500 *N*. How much work is done by the truck in pulling the car 1 *km* ?

$$W = \vec{F} \cdot \vec{D} = \left| \vec{F} \right| \left| \vec{D} \right| \cos \theta.$$

Observe that the units for Newtons are $\frac{kg \cdot m}{s^2}$, and the units for work (Joules) are $\frac{kg \cdot m^2}{s^2}$.

Therefore, to maintain consistent units, we convert the distance from kilometers to meters.

 $W = 1500 \cdot 1000 \cdot \cos \frac{\pi}{6} \approx 1,299,038 J.$