MATH 1272: Calculus II

12.3 - Dot Product

Review:

Dot Product: If $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then the dot product of \vec{a} and \vec{b} is the number $\vec{a} \cdot \vec{b}$ or $\langle\vec{a}, \vec{b}\rangle$ given by $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$. Observe that with this type of "multiplication," we start with two vectors, but end up with a scalar. As a result, this is also called the scalar product, or inner product. In the next section, we will learn of a different type of vector multiplication where the result is a vector (vector product or cross product).

Properties of the Dot Product

- $\vec{a} \cdot \vec{a}=|\vec{a}|^{2}=\left(\sqrt{a_{1}^{2}+\ldots+a_{n}^{2}}\right)^{2}=a_{1}^{2}+\ldots+a_{n}^{2}$,
- $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a} \quad$ Commutativity.
- $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c} \quad$ Distributivity.
- (cla) $\vec{b}=c(\vec{a} \cdot \vec{b})=\vec{a} \cdot(c \vec{b}) \quad$ Scalar Associativity. $\quad \overrightarrow{0} \cdot \vec{a}=0 \quad$ Scalar Zero.

Dot Product Angle Theorem: If θ is the angle between \vec{a} and \vec{b} where $0 \leq \theta \leq \pi$, then $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$.

$\vec{A} \cdot \vec{B}=|\vec{A}| \cdot|\vec{B}| \cdot \cos \theta$
Corollary: Let θ be the angle between the (nonzero) vectors \vec{a} and \vec{b}, then: $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$.
Perpendicular/Orthogonal: Say we have nonzero vectors \vec{a} and \vec{b} where the acute angle between them is $\theta=\frac{\pi}{2}$. In this case, the previous theorem gives us $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \frac{\pi}{2}=0$. Conversely, if $\vec{a} \cdot \vec{b}=0$, then $\cos \theta=0$ and the acute angle θ must be equal to $\frac{\pi}{2}$. The zero vector $\overrightarrow{0}$ is considered to be perpendicular to all vectors, therefore we have:
Vector Orthogonality Criteria: Two vectors \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b}=0$.

Parallel: Also observe that $\cos \theta= \pm 1$ when \vec{a} and \vec{b} are parallel to each other. Therefore, we can
determine whether to vectors are parallel by looking at whether $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}= \pm 1$.

Useful Tidbit: You can easily experiment to find that $\vec{a} \cdot \vec{b}$ is positive for $\theta<\frac{\pi}{2}$, and negative for $\theta>\frac{\pi}{2}$.
We can therefore think of $\vec{a} \cdot \vec{b}$ as measuring the extent to which the two vectors point in the same direction: positive when in the same direction, 0 when perpendicular, and negative when pointing in the opposite direction.

Direction Angles and Direction Cosines

Let \vec{P} be a nonzero vector in three dimensions.
Direction Angles: The angles α, β, and γ are those angles (all in the interval $[0, \pi]$) that the vector \vec{P} makes with the positive x, y, and z-axes, respectively.

Direction Cosines: $\cos \alpha, \cos \beta, \cos \gamma$.
Simple calculations reveal that using these angles, we can rewrite \vec{P} as
$\vec{P}=\langle x, y, z\rangle=\langle | \vec{P}|\cos \alpha,|\vec{P}| \cos \beta,|\vec{P}| \cos \gamma\rangle=|\vec{P}|\langle\cos \alpha, \cos \beta, \cos \gamma\rangle$.
Therefore, the unit vector is: $\frac{\vec{P}}{|\vec{P}|}=\langle\cos \alpha, \cos \beta, \cos \gamma\rangle$.

Projections

Vector Projection: If S is the foot of the perpendicular from R to the line containing $\overrightarrow{P Q}$, then the vector with representation $\overrightarrow{P S}$ is called the vector projection of \vec{u} onto \vec{v} and is denoted by $\operatorname{proj}_{v} \vec{u}$ (also thought of as the "shadow" of \vec{u}).
So we have:
Vector Projection of \vec{u} onto \vec{v} : $\quad \operatorname{proj}_{v} \vec{u}=\left(\frac{\vec{\imath} \cdot \vec{u}}{|\vec{v}|}\right) \frac{\vec{v}}{|\vec{v}|}=\frac{\vec{v} \cdot \vec{u}}{|\vec{v}|^{2}} \vec{v}$.

Scalar Projection of \vec{u} onto \vec{v} : This is the signed magnitude (scalar component) of the vector projection, which is the number $|\vec{u}| \cos \theta$, where θ is the angle between the vectors, denoted $\operatorname{comp}_{v} \vec{u}$. So we have:
Scalar Projection of \vec{u} onto $\vec{v}: \quad \operatorname{comp}_{v} \vec{u}=\frac{\vec{v} \cdot \vec{u}}{|\vec{v}|}$,

Displacement Vector: Suppose that some constant force is written as a vector $\vec{F}=\overrightarrow{P R}$. And suppose this force is moving an object from P, but in a direction not parallel to $\overrightarrow{P R}$ (see image above where the object is moved along the ground, instead of in the direction of the force). If the force moves the object from P to Q, then the displacement vector is notated $\vec{D}:=\overrightarrow{P Q}$.

Work: This is the product of the component of the force along $\vec{D}(|\vec{F}| \cos \theta)$, by the distance moved $(|\vec{D}|)$ or: $W=(|\vec{F}| \cos \theta)|\vec{D}|$. Therefore, using the dot product angle theorem, we have $W=|\vec{F}||\vec{D}| \cos \theta=\vec{F} \cdot \vec{D}$.

Problem \#4 Letting $\vec{a}=\langle 6,-2,3\rangle$ and $\vec{b}=\langle 2,5,-1\rangle$, find $\vec{a} \cdot \vec{b}$.
$\vec{a} \cdot \vec{b}=6 \cdot 2+(-2) \cdot 5+3 \cdot(-1)=-1$.

Problem \#18 Find the angle between the vectors $\vec{a}=\langle 4,0,2\rangle$, and $\vec{b}=\langle 2,-1,0\rangle$. (First find an exact expression and then approximate to the nearest degree.)
$\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
$|\vec{a}|=\sqrt{4^{2}+0^{2}+2^{2}}=2 \sqrt{5}, \quad|\vec{b}|=\sqrt{2^{2}+(-1)^{2}+0^{2}}=\sqrt{5}$.
$\vec{a} \cdot \vec{b}=\langle 4,0,2\rangle \cdot\langle 2,-1,0\rangle=4 \cdot 2+0 \cdot(-1)+2 \cdot 0=8$.
$\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{8}{2 \sqrt{5}(\sqrt{5})}=\frac{4}{5}$.
$\theta=\cos ^{-1} \frac{4}{5} \approx 37^{\circ}$

Problem \#22 Find, correct to the nearest degree, the three angles of the triangle with the vertices $A(1,0,-1), B(3,-2,0), C(1,3,3)$.

$$
\begin{aligned}
& \overrightarrow{A B}=(3-1,-2-0,0+1)=(2,-2,1), \\
& \overrightarrow{B C}=(1-3,3+2,3-0)=(-2,5,3), \\
& \overrightarrow{C A}=(1-1,0-3,-1-3)=(0,-3,-4)
\end{aligned}
$$

"If θ is the angle between \vec{a} and \vec{b} where $0 \leq \theta \leq \pi$, then $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$."
$\cos \theta_{B}=\frac{\overrightarrow{A B} \cdot \overrightarrow{B C}}{|\overrightarrow{A B}||\overrightarrow{B C}|}=\frac{-2 \cdot 2-2 \cdot 5+1 \cdot 3}{\sqrt{2^{2}+2^{2}+1^{2}} \sqrt{2^{2}+5^{2}+3^{2}}}=\frac{-4-10+3}{\sqrt{9} \sqrt{38}}=\frac{-11}{3 \sqrt{38}} \approx-0.595$,
$\cos \theta_{C}=\frac{\overrightarrow{B C} \cdot \overrightarrow{C A}}{|\overrightarrow{B C}||\overrightarrow{C A}|}=\frac{-2 \cdot 0-5 \cdot 3-3 \cdot 4}{\sqrt{2^{2}+5^{2}+3^{2}} \sqrt{0^{2}+3^{2}+4^{2}}}=\frac{-15-12}{\sqrt{38} \sqrt{25}}=-\frac{27}{5 \sqrt{38}} \approx-0.876$,
$\cos \theta_{A}=\frac{\overrightarrow{C A} \cdot \overrightarrow{A B}}{|\overrightarrow{C A}||\overrightarrow{A B}|}=\frac{2 \cdot 0+3 \cdot 2-4 \cdot 1}{\sqrt{0^{2}+3^{2}+4^{2}} \sqrt{2^{2}+2^{2}+1^{2}}}=\frac{6-4}{\sqrt{25} \sqrt{9}}=\frac{2}{15} \approx 0.133$.
Therefore, $\theta_{B}=\cos ^{-1}\left(-\frac{11}{3 \sqrt{38}}\right) \approx 2.208$,
Or, $\cos ^{-1}\left(\frac{11}{3 \sqrt{38}}\right) \approx 0.9338$,

$$
\theta_{C}=\cos ^{-1}\left(-\frac{27}{5 \sqrt{38}}\right) \approx 2.638
$$

Or, $\cos ^{-1}\left(\frac{27}{5 \sqrt{38}}\right) \approx 0.5033$,
$\theta_{A}=\cos ^{-1}\left(\frac{2}{15}\right) \approx 1.437$
Or, $\cos ^{-1}\left(-\frac{2}{15}\right) \approx 1.705$.
We need $\theta_{A}+\theta_{B}+\theta_{C} \approx \pi$.
Therefore, $\theta_{B} \approx 0.9338, \theta_{C} \approx 0.5033, \theta_{A} \approx 1.705$.

Problem \#24 Determine whether the following vectors are orthogonal, parallel, or neither.
a) $\vec{u}=\langle-3,9,6\rangle, \vec{v}=\langle 4,-12,-8\rangle$.
$\vec{u} \cdot \vec{v}=-3 \cdot 4+9 \cdot(-12)+6 \cdot(-8)=-168 \neq 0 . \quad$ Not orthogonal.
$|\vec{u}|=\sqrt{3^{2}+9^{2}+6^{2}}=3 \sqrt{14}, \quad|\vec{v}|=\sqrt{4^{2}+12^{2}+8^{2}}=4 \sqrt{14}$.
Therefore, $\cos \theta=\frac{\vec{u} \cdot \overrightarrow{\vec{v}}}{|\vec{u}||\vec{v}|}=\frac{-168}{3 \sqrt{14} \cdot 4 \sqrt{14}}=-1$.
So, \vec{u} and \vec{v} are parallel.
b) $\vec{u}=\vec{i}-\vec{j}+2 \vec{k}, \quad \vec{v}=2 \vec{i}-\vec{j}+\vec{k}$.
$\vec{u} \cdot \vec{v}=1 \cdot 2-1 \cdot(-1)+2 \cdot 1=5$
$\neq 0$. Not orthogonal.
$|\vec{u}|=\sqrt{1^{2}+1^{2}+2^{2}}=\sqrt{6} . \quad|\vec{v}|=\sqrt{2^{2}+1^{2}+1^{2}}=\sqrt{6}$.
Therefore, $\cos \theta=\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}=\frac{5}{6} \neq \pm 1$. So, \vec{u} and \vec{v} are NOT parallel.
c) $\vec{u}=\langle a, b, c\rangle, \quad \vec{v}=\langle-b, a, 0\rangle$.
$\vec{u} \cdot \vec{v}=a \cdot(-b)+b \cdot a+c \cdot 0=0$.
Orthogonal, so not parallel.

Problem \#30 Find the acute angle between the lines $x+2 y=7$ and $5 x-y=2$.
For the first line, we have points $(7,0)$ and $\left(0, \frac{7}{2}\right)$. For the second line we have points $\left(\frac{2}{5}, 0\right)$ and $(0,-2)$.
Therefore, we can define vectors $\vec{u}=2 \cdot\left\langle 7-0,0-\frac{7}{2}\right\rangle=\langle 14,-7\rangle$ and $\vec{v}=5 \cdot\left\langle\frac{2}{5}-0,0+2\right\rangle=\langle 2,10\rangle$, for the two lines respectively.
$\cos \theta=\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}=\frac{14 \cdot 2+(-7) \cdot 10}{\sqrt{14^{2}+7^{2}} \sqrt{2^{2}+10^{2}}}=\frac{28-70}{\sqrt{245} \sqrt{104}}=\frac{-42}{7 \sqrt{5} \cdot 2 \sqrt{26}}=\frac{-3}{\sqrt{130}}$.
Therefore, $\theta_{1}=\cos ^{-1}\left(\frac{-3}{\sqrt{130}}\right) \approx 1.8375>\frac{\pi}{2} \approx 1.57$, so this is the obtuse angle.
So the acute angle must be $\theta_{2}=\pi-\cos ^{-1}\left(\frac{-3}{\sqrt{130}}\right) \approx 1.3045$.

Problem \#42 Given $\vec{a}=\langle-2,3,-6\rangle$ and $\vec{b}=\langle 5,-1,4\rangle$, find the scalar and vector projections of \vec{b} onto \vec{a}.
Scalar Projection of \vec{a} onto \vec{b} :
$\operatorname{comp}_{b} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}=\frac{-2 \cdot 5+3(-1)-6(4)}{\sqrt{2^{2}+3^{2}+6^{2}}}=\frac{-10-3-24}{\sqrt{49}}=\frac{-37}{7}$.
Vector Projection of \vec{a} onto \vec{b} :
$\operatorname{proj}_{b} \vec{a}=\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}\right) \frac{\vec{b}}{|\vec{b}|}=\frac{-37}{7} \frac{\langle 5,-1,4\rangle}{\sqrt{5^{2}+1^{2}+4^{2}}}=-\frac{37}{7 \sqrt{42}}\langle 5,-1,4\rangle$.
Problem \#50 A tow truck drags a stalled car along the road. The chain makes an angle of 30° with the road and the tension in the chain is 1500 N . How much work is done by the truck in pulling the car 1 km ?
$W=\vec{F} \cdot \vec{D}=|\vec{F}||\vec{D}| \cos \theta$.
Observe that the units for Newtons are $\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}}$, and the units for work (Joules) are $\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2}}$.
Therefore, to maintain consistent units, we convert the distance from kilometers to meters.
$W=1500 \cdot 1000 \cdot \cos \frac{\pi}{6} \approx 1,299,038 \mathrm{~J}$.

